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Particles interacting resonantly with large-amplitude coherent one-dimensional wave packets can trap
and subsequently detrap or even reflect. Many resonant particles are strongly scattered in the process,
and the long-time dynamics of such particles is stochastic throughout a large region of phase space when
repeated wave-particle interactions occur. We apply adiabatic invariance theory and separatrix crossing
theory to this Hamiltonian system, which is beyond the realm of quasilinear theory. We calculate the
adiabatic invariant through first order in the (small) slowness parameter € for all particle trajectories.
Because the trajectories of resonant particles cross a separatrix, the adiabatic invariant is broken and
separatrix-crossing theory must be used. Our Hamiltonian provides a simple model for the fundamental
physics of narrow-spectrum plasma turbulence, for strong rf current drive in a tokamak, and for electron

dynamics in a recirculating free-electron laser.

PACS number(s): 52.20.Dq, 52.25.Fi, 52.25.Tx, 52.35.Ra

I. INTRODUCTION

The resonant interaction of particles with electrostatic
plasma waves has been a fundamental issue in plasma
physics for decades, beginning with Landau damping [1]
and quasilinear diffusion [2]. These early analyses in-
volved small-field expansions, as well as the related as-
sumption that the bounce time of trapped particles is
long compared to other relevant time scales. Here we
consider the opposite limit of arbitrarily large field ampli-
tudes, and we directly address the issue of particle trajec-
tories that trap in a wave packet and subsequently exe-
cute many bounce oscillations.

Quasilinear theory is appropriate for what is now
known as weak plasma turbulence. Dupree [3] derived a
simple criterion for the transition from weak turbulence
to strong turbulence, based on two time scales. The first
time scale, 7, ~(m /ekV,)!/?, is the bounce time of a
particle with charge e and mass m, deeply trapped in a
sinusoidal electrostatic potential of wave number k and
maximum amplitude ¥V,. The second time scale,
Tauto ™~ 1/kAvg, is the field autocorrelation time, where k
is the central wave number of a given wave spectrum, and
Av, is the characteristic separation between maximum
and minimum phase velocities.

In the weak turbulence limit 7,,,, <<7,, the waves rear-
range themselves before a particle can execute a bounce
oscillation under the influence of a single wave; therefore,
the particle is kicked randomly from wave to wave. This
limit occurs when the electric fields are small and the
spectrum of phase velocities is broad. The strong tur-
bulence limit 7, <<7,,, is characterized by a narrow
spectrum of large electric fields, so a particle can execute
many bounce oscillations before the relative wave phases
have changed significantly. This is the dynamical regime
treated here.

Quasilinear theory was originally developed in a self-
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consistent context by using perturbation theory to solve
the Vlasov and Poisson equations; however, Doveil and
Grésillon [4] showed that it could very naturally be ap-
plied to test particles interacting with a random spectrum
of applied electrostatic fields. They calculated a quasilin-
ear diffusion coefficient which compared well with nu-
merical simulations for 7,,,/7, <0.4. Fuchs, Krapcheyv,
Ram, and Bers [5] (whom we will refer to henceforth as
FKRB) took quasilinear theory one step further from its
original context by applying it to test particles interacting
with a coherent one-dimensional (1D) wave packet hav-
ing a Gaussian envelope. They also calculated a quasilin-
ear diffusion coefficient, obtaining good agreement be-
tween theory and numerics for 7,,,/7, <0.2, where for
their system the autocorrelation time is simply the transit
time of a resonant particle moving through the wave
packet.

The numerical work of FKRB showed that, in the lim-
it T,y0> Ty, the particle dynamics was dominated by
strong scattering (with even reflections occurring for
large enough amplitudes), not by small, diffusive changes
in the velocity. Qualitatively the same result was found
numerically by Graham and Fejer [6] for particle dynam-
ics in a random field of waves with a narrow spectrum of
phase velocities. Thus the dynamics of test particles in-
teracting with a localized, large-amplitude coherent wave
packet is similar to the dynamics of test particles in a
narrow spectrum of random, large-amplitude electric
fields.

We have chosen to explore the dynamics of wave-
particle interactions in the strong turbulence limit by
considering a coherent wave packet very similar to the
model studied in FKRB. Our model becomes equivalent
to that of FKRB in the limit that the wave packet is very
broad, which is the limit of interest here. Two important
dimensionless parameters which arise in our analysis are
the slowness parameter € and the maximum wave ampli-
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tude a,. The slowness parameter e ~1/kL <<1, where L
is the characteristic length scale of the wave envelope, is
inversely proportional to the number of spatial wave os-
cillations within the envelope of the wave packet. The
amplitude a,=(k’e/maw?)V,, where o is the wave fre-
quency, is the maximum wave amplitude in our dimen-
sionless units, and is assumed here to be of order unity.

The Hamiltonian system we treat here contains the two
distinct time scales discussed above. The slowness pa-
rameter € <<1 controls the slow time scale over which
wave parameters vary (essentially, the transit time 7,,,,).
In fact, by Fourier transforming our wave model to ob-
tain the spectrum of wave numbers, one can show in the
limit € <<1 that 7,,,,~1/(ew). The rapid oscillations of
particle phase with respect to the wave occur on the fast
time scale, the bounce time in the region of maximum
wave amplitude, 7, ~ 1 /(wa}’?).

By transforming away the fast oscillations in phase,
one can construct an approximate invariant of the
motion, known as the adiabatic invariant [7]. However,
particles which trap or detrap cross the separatrix, a
phase space trajectory of the time independent (e—0)
Hamiltonian separating bound and unbound trajectories.
Because the separatrix contains a fixed point, particle os-
cillations in its vicinity are slow, causing a breakdown in
adiabatic theory for all separatrix-crossing particles.
This breakdown of adiabatic invariance occurs over the
entire region of phase space where separatrix crossing
occurs. We call this region separatrix-swept phase space.

Separatrix-crossing theory [8,9] provides an analytic
description of the dynamics of separatrix-swept phase
space. This theory uses the method of asymptotic match-
ing to determine the adiabatic invariant after crossing a
separatrix, given the adiabatic invariant before the cross-
ing. Before and after the crossing, adiabatic invariance
theory is used. Close to the separatrix, the change in the
invariant is calculated perturbatively. The three solu-
tions are then matched in the two regions of overlap. A
calculation of this type was first performed by Timofeev
[10] for a sinusoidal potential with slowly changing am-
plitude. The general 1D calculation was performed by
Cary, Escande, and Tennyson [8], and independently by
Neishtadt [11].

We define the ratio of the bounce time to the auto-
correlation time to be the adiabaticity parameter.
£a=e/a1/ 2 where a is the local wave amplitude. The
motion of trapped particles which remain far from any
separatrix will be adiabatic if €, << 1. Separatrix-crossing
theory can be applied to trajectories that trap or detrap if
e/al’? << 1, where a, is the wave amplitude at the time
of trapping or detrapping. In other words, our analysis
requires €, <<1 when the separatrix is crossed.

Previous studies [12,13] of the dynamical system con-
sidered here, which treated only a single wave-particle in-
teraction for the limit € —0, used adiabatic invariance
theory and separatrix-crossing theory to explain the ori-
gin of strong particle scattering as follows. A nearly res-
onant particle with an initial momentum greater than the
phase velocity of the wave will encounter the wave packet
and become trapped, crossing the separatrix from above.
This particle then oscillates inside the separatrix as it is
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ferried through the wave packet, until it detraps on the
other side. Depending upon its phase, the particle will ei-
ther detrap above the separatrix or below the separatrix.
If it detraps above the separatrix, the final momentum of
the particle when far from the wave will differ from its in-
itial momentum only by O(e). If, however, the particle
detraps below the separatrix, then its final momentum
will differ by order unity from its initial momentum —
this is the strong scattering that has previously been ob-
served numerically. If the wave amplitude is large
enough, some particles cross the separatrix twice in rapid
succession from top to bottom (or vice versa) and are res-
onantly reflected by the wave. These issues are discussed
at length in Ref. [13], which we will henceforth refer to as
paper 1.

The value of the adiabatic invariant after a separatrix-
crossing depends very sensitively on a phase variable,
called the crossing parameter M, which is linearly related
to the angle conjugate to the adiabatic invariant. Given a
trajectory which makes two successive separatrix cross-
ings (e.g., trapping followed by detrapping), the crossing
parameter at the second crossing will be correlated with
the crossing parameter at the first crossing. The relation-
ship between the two crossing parameters was calculated
by Escande [14] for Hamiltonian systems containing sym-
metric separatrices, and independently by Cary and
Skodje [9] for the general 1D case.

Thus, separatrix-crossing dynamics has been reduced
to a map [8,9], which we call the separatrix-crossing map:
after each crossing, the resulting values of J and M can be
calculated for an arbitrary trajectory. In previous work,
the authors [15] assumed the separatrix-crossing map to
be stochastic (essentially, phase correlations between sub-
sequent separatrix crossings were neglected) and used it
to calculate a diffusion coefficient for resonant particle
dynamics in a single wave with slowly, periodically
modulated amplitude. Numerical results confirmed that
the dynamics was diffusive, although phase correlations
significantly altered the shape of the diffusion coefficient.
The numerical work of Menyuk [16] indicates that, for a
slowly and periodically driven standing wave, the trajec-
tories of resonant particles move ergodically throughout
separatrix-swept phase space, which further supports the
hypothesis that the separatrix-crossing map is stochastic.

In addition, analytic work [17,18] has shown that
separatrix-swept phase space is occupied by a homoclinic
tangle, and that any stable islands within this tangle have
areas which are O(e) or smaller. These results suggest
that separatrix-swept phase space is ergodic in the limit
e—0. A region of phase space is called ergodic if the
time average of any dynamical quantity, over long times,
can be replaced by an ensemble average, with the ensem-
ble uniformly distributed throughout the region in ques-
tion [19]. Ergodicity of separatrix-swept phase space
would unambiguously confirm that the separatrix-
crossing map is stochastic. More importantly, given an
arbitrary initial ensemble of particles in separatrix-swept
phase space, ergodicity allows one to calculate analytical-
ly the average canonical momentum in the long-time
limit.

We briefly present our Hamiltonian model in Sec. II



50 DYNAMICS OF PARTICLES TRAPPING AND DETRAPPINGIN ...

and discuss the necessity of transforming to a Hamiltoni-
an which varies slowly as a function of position, with the
particle position being treated as the independent vari-
able. It is shown in this section how the separatrix
divides phase space into three distinct regions. In Sec.
I1I, we use adiabatic theory as formulated in Refs. [8] and
[9] to calculate the adiabatic invariant through first order
in g, in each of the three regions of phase space. We also
present the limiting forms of the lowest-order adiabatic
invariant on the separatrix, and of the first-order correct-
ed adiabatic invariant far from the wave packet.

We calculate the separatrix-crossing map for our Ham-
iltonian in Sec. IV, closely following Ref. [8] in calculat-
ing the change in the adiabatic invariant, and Ref. [9] in
calculating the change in the crossing parameter between
subsequent crossings. The many possible transitions
from one phase space region to another are discussed in
detail. (This issue is presented in a less compact but
simpler and more geometrical fashion in paper 1.) The
Appendix treats the related problem of how to calculate
the crossing parameter for the initial separatrix crossing.

In Sec. V, we impose periodicity on the system by plac-
ing our large-amplitude wave packet in a 1D box, and we
discuss the long-time dynamics associated with multiple
wave-particle interactions. Numerical results show that
an initial particle ensemble will evolve dramatically dur-
ing the first few wave-particle interactions, due to the
strong scattering discussed above and in paper I. On a
longer time scale, the dramatically altered distribution
function relaxes slowly until it goes flat, with the particles
now distributed uniformly (in a coarse-grained sense)
throughout separatrix-swept phase space.

We summarize the salient aspects of our study in Sec.
VI, where we also discuss the relevance of this work to
specific physical problems. The applications considered
include the dynamics of plasma electrons in the presence
of strong, narrow-spectrum, electrostatic turbulence;
high power rf current drive in a tokamak plasma; and the
dynamics of electrons in a recirculating Compton-regime
free-electron laser (FEL) with a wiggler magnet that is ta-
pered at both ends so as to slowly ramp the magnetic field
up and down.

II. HAMILTONIAN MODEL

We model the interaction between test particles and a
1D coherent wave packet using the following Hamiltoni-
an:

H(q,p,t)=1p*+aleq)cos(qg —1) . (1)

Units have been chosen such that the mass of the particle
and the wave number and frequency of the wave are uni-
ty. The wave amplitude is assumed to have the form
a(eq)=ayf(eq), where f is a function of unit peak and
unit width. The number of wavelengths within the wave
envelope is given roughly by 1/e~kL, where k is the
central wave number and L is the characteristic length
scale of the wave packet; this number is large for a wave
packet, implying that € <<1. Trapped particles oscillate
characteristically at the bounce frequency w, =a!/2. The
value of the Hamiltonian function H is E, where E is the
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particle energy in the laboratory-frame (i.e., the frame
where the wave envelope is stationary).

In dimensional units, the bounce time is
7, ~1/(a)?w), where  is the wave frequency. The spec-
trum of wave numbers encompassed by the wave packet
can be determined by Fourier transforming
a(eq)cos(g —t); given the condition that € <<1, one can
obtain the relation Avy~w/k’L =cw/k. Thus we find
that 7,,,~1/(ew), which in turn yields the ratio
Ty /Tauto~ €/@'/2, our adiabaticiy parameter e,. We con-
sider the parameter regime where € <<1 and a is of or-
der unity, which implies that €, <<1 and 7, <<,

It was shown in paper I that the Hamiltonian in Eq. (1)
can be canonically transformed into the following Hamil-
tonian:

K(¢,E,A=eq)=—EZV2[E—a())cos(¢)]—1 . (2)

The value of the Hamiltonian function K is — E # where
E,=(p —1)*/2+a(A)cos(q —1) is the particle energy in
the wave frame (i.e., the frame where the wave oscilla-
tions are stationary). The new coordinate § =g —t¢ is the
particle’s phase with respect to the wave. The new
canonically conjugate momentum E is the particle’s ener-
gy in the laboratory frame. The new independent vari-
able g is the particle’s position.

The square root in Eq. (2) (including the +) is equal to
p, the particle momentum in the lab frame. As is dis-
cussed in paper I, the fact that the Hamiltonian K has
two branches leads to a phase space with two sheets;
however, this phenomenon will cause us no difficulties.
We show the phase space of the Hamiltonian for =2 in
Fig. 1. Specifically, Fig. 1 shows contours of constant
K(¢,E,A), for a fixed value of A, in the E-¢ plane. One
can imagine that the figure is wrapped around a vertical
cylinder, so that $=0 and 27 are the same point. In Fig.
1, we have inverted the lower phase space sheet (where
p <0) and attached it to the bottom of the upper sheet.

We have patched the two phase space sheets together

9.0 T

//_\\

Region a

Region ¢

1 2.5

0.0

Region b

0 n 2n

FIG. 1. Phase space of the Hamiltonian in Eq. (2) for A=¢q
held fixed and a(A)=2. The thicker line corresponding to

'"=a(A)cos¢ divides the two phase space sheets. The two
branches of the separatrix, labeled spx, divide the phase space
into three regions: region a above the separatrix, region b below
the separatrix, and region c inside the separatrix.
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in Fig. 1 in order to show the phase space topology as
clearly and simply as possible. However, this gives rise to
a slight complication, because a given value of E does not
uniquely correspond to one phase space sheet or another.
For this reason, we introduce a variable E’, such that
E’'=E on the upper sheet, while E'=2a(A)cos(¢)—E on
the lower sheet. The thicker line in the figure, which cor-
responds to E'=E=a(A)cos(¢), separates the two
sheets.

In Fig. 1, the two branches of the separatrix are labeled
spx. On these two curves, E ¢=a(}»). The separatrix
divides the phase space into three regions. We call the
region above the separatrix region a, and trajectories in
this region are said to be passing above. In region a,
Py>0and E;>a(l), where p,=p —1 is the wave-frame
momentum. We call the region below the separatrix re-
gion b, and trajectories in this region are said to be pass-
ing below. In region b, p, <0 and E,>a(A). We call the
region inside the separatrix region ¢, where trajectories
are trapped. In region c, p, can take either sign and
E,<a(r).

III. ADIABATIC INVARIANCE THEORY

The adiabatic invariant J for a slowly varying 1D
Hamiltonian of the form K(¢,E,A=eq)=—E, can be
written as an asymptotic series in powers of €:

J=Jo(E4A)+eJ |(EgA,¢)+eW Ty (Eghd)+ - . (3)

Kruskal [7] proved the existence of such a series for the
general multidimensional problem, although specific 1D
cases had been considered previously [20]. The lowest-
order term J, is often called the action, which is the
phase space area enclosed by a trajectory of the time-
independent (i.e., e—0) system. The first-order correc-
tion J, has been calculated for a number of specific cases
[21,22] and for the general 1D problem [8,11].

It has been shown [9,23] that the successive terms in
Eq. (3) arise naturally when transforming the slowly vary-
ing Hamiltonian, order by order in g, to an integrable
Hamiltonian. This is done by first transforming the
Hamiltonian to action-angle variables, then using a series
of near-identity canonical transformations to remove the
angle dependence order by order in €. The adiabatic in-
variant series is just the transformed action variable
which results from this process, showing in a natural way
that J is a canonical variable.

The action is defined by the equation

Jo(E g M= PdOE, (E4,A,8) (4a)

where E;(E ¢,)»,¢) is the function which satisfies the
identity K(¢,E;(E,,A,¢),A)=—E, and which is equal
in value to the canonical momentum E. Thus the func-
tion E; is equal in value to our original Hamiltonian H,
although it is a function of different variables. Inverting
the Hamiltonian K yields

EL(EyA¢)=E,+1+V2[E;—a(A)cos(4)] . (4b)

The square root (including the +) is equal to p,, the par-
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ticle momentum in the wave frame; the + sign corre-
sponds to the upper branch of E;, and the — sign to the
lower branch.

The loop integral of Eq. (4a) is evaluated with E; and A
held fixed, and with ¢ changing in the direction of parti-
cle motion. (A different convention was used in paper I
to simplify the exposition; however, we must use this con-
vention here in order to apply the separatrix crossing
theory of Ref. [8] in a straightforward manner.) In re-
gion a, the integration is from O to 27 and the upper
branch of E; is used, while in region b the integration is
from 27 to O and the lower branch is used. In region c,
the integral completes a full circuit in phase, using first
one branch of E; and then the other. These integrations
yield

JoalEg,M)=8a'?k "16(k)+2m(E4+1) , (5a)
Jop(Eg,M)=8a'?k T'6(k)—2m(E4+ 1), (5b)
JoelEg,M)=16a'?[6(k ")+ (1—k2)H (k"] , (50)
kAE4M)=2a/(E4+a), (5d)

where #/(k) and &(k) are complete elliptic integrals of
the first and second kinds, respectively, as defined on p.
905 of Ref. [24]. The subscripts on J,, indicate the phase
space region for which the result is valid. These results
differ from those in Egs. (8) and (9) of paper I by a factor
of 2, a different sign convention, the addition of a con-
stant to the invariants for regions a and b, and slightly
different notation.

According to Eq. (B14) of Ref. [8], the first-order
correction to the adiabatic invariant is

| 8Jg(Eg4A) 3J4(E4A)

2 3E, A
OE;(E4,A,¢")

oy S

¢ aEL(Edn}‘r‘ﬁ”)
x[ld¢r——F—— (6

JI(E¢1}\'y¢):

As was the case for J, this loop integral is evaluated
with E 4 and A held fixed, and with ¢’ and ¢" changing in
the direction of particle motion, taking into account the
two branches of E;. We find it convenient to evaluate
Eq. (6a) in each region of phase space at a particular
value of ¢, which we call ¢,. Then, once J,(E,,A, o) is
known, we use Eq. (B9) of Ref. [8] to obtain J, for arbi-
trary ¢:

J](E¢,)\,¢)=J1(E¢’}"’¢O)

aJO ¢ 'aEL(E¢,A',¢,)
aJ OE;(E ,\,¢')

Ly A L AT
oA Y oA

We choose ¢,=0,27 for passing trajectories, and
$o=bmin=arccos[E ; /a())] for trapped trajectories. We
obtain the results
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J,ﬂ(E¢,A,¢)=;‘g—{[aV21r/k +sgn(py FH(K)][6(8,k)—(1—kH)FH(8,k)]
—[a'/?8/k +sgn(p4)F(8,k)|[6(k)—(1—k2)H(K)]} , (7a)
JIC(E¢,A,¢)=——4%8[26(k'1)—7{(k"1)]+87d[6’(y,k_1)7{(k‘1)—6’(k_1)57(y,k_1)]sgn(p¢) , (7b)
a

where 8=(¢—m), y=arcsin[k sin(8)], F(y,k) and
6(v,k) are incomplete elliptic integrals of the first and
second kinds as defined on pp. 904 and 905 of Ref. [24],
and k is defined in Eq. (5d). The subscript B in Eq. (7a) is
used to indicate that this result holds for both regions a
and b. The function sgn has absolute value unity and
takes the sign of its argument, while the symbol ' denotes
differentiation with respect to A.

Following paper I, we define the separatrix action
Y,(A) to be the value of the lowest-order adiabatic in-
variant on the separatrix in region 7. Taking the limit
E¢—>a(7\.) of Egs. (5), we obtain

Y, (A)=8a'2+2m(a+1), (8a)
Y, (A)=8a'2—2m(a+1), (8b)
Y (A=Y, (A)+Y,(A)=16a'"? . (8c)

Again following paper I, we consider the form of the adi-
abatic invariant for passing particles far from the wave,
where the local wave amplitude is vanishingly small.
Taking the limit —0 of Egs. (5a) and (5b) yields

j.p)=mp?, (9a)
js(p)=—mp?, (9b)

where we have used a lower case j to indicate that this re-
sult holds only in the limit that the wave amplitude van-
ishes. Because momentum is conserved in this limit, it is
reasonable that the adiabatic invariant should reduce to a
simple function of the momentum. The results in Egs. (8)
and (9) differ from those presented in Eqs. (10) and (11) of
paper I by a factor of 2, a different sign convention, and
the addition of a constant to the invariants for regions a
and b.

IV. SEPARATRIX-CROSSING THEORY

In calculating the separatrix-crossing map for the
Hamiltonian of Eq. (2), we use the following notation
with regard to the three regions of phase space: the sym-
bols a and B will each be used to refer to either region a
or region b, but not region ¢, while the symbols £ and 7
will be used to refer to any one of the three regions. In
Sec. IV A, we closely follow Cary, Escande, and Ten-
nyson [8] in calculating the required time-dependent pa-
rameters associated with near-separatrix motion and in
presenting the formula for the change in J due to a single
crossing. In Sec. IV B, closely following Cary and Skodje
[9], we show explicitly how to calculate the change in the
crossing parameter between trapping and detrapping,
thus accounting for the effect of phase correlations.

A. A single separatrix crossing

To lowest order, the final adiabatic invariant of a
separatrix-crossing trajectory can be determined simply
by assuming that adiabatic invariance holds right up to
the separatrix [8]. In that limit, the crossing occurs at
the pseudocrossing time A, =eq,, defined by J;, =Y (A,),
where Ji, is the initial value of J on the trajectory in re-
gion £. Likewise, if the trajectory crosses into region 7,
then the final value of the adiabatic invariant in that re-
gion is given, to lowest order, by J;,=Y,(1,). In addi-
tion, the final value of J has a small phase-dependent
correction, which we now proceed to calculate.

The period on a trajectory of the A=const system is
given by [8]

YolEy2) =§d (10a)

3E,(E 4\, )
aE¢ ¢ ’

To(E4A)= 3E,
If T, is evaluated and approximated for |[E4—a(A)| <<1
(i.e., near the separatrix), it takes the following form:

+O0((Ey—a)n|E4—al), (10b)
To.(E4,A)=20; 'In|Ey, /(E4—a)
+O0(E4—a)n|Ey—al), (100)
where the energy parameters are given by
E¢a=32aexp(21ra1/2) , (11a)
E4,=32aexp(—2ma'’?) , (11b)
E4 =(E4Ey,)'*=32a , (11c)

12 is the exponentiation rate of orbits near the

and w, =a
saddle point.

The change in the value of the Hamiltonian during one
near-separatrix oscillation, denoted by AE o is used in
the definition of the crossing parameter. To first order in

€, we obtain [8]

Ao’

—AE¢,,(A)=Y(,(M=eaI,2(1+u) : (12a)
—AE4(M=Y, (M=t (1-0), (12b)
—AE, (M=Y,(M)=e>2 (120)

’
al/l

where we define v =(m/2)a'/?. Near the separatrix, E4
changes by the same amount in region ¢ during the upper
half of a trapped oscillation as it does during a single os-
cillation in region a. Likewise, near the separatrix, E,
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changes by the same amount in region ¢ during the lower
half of a trapped oscillation as it does during a single os-
cillation in region b. This is the reason that
AE, =AE,, +AE,,. We also define the parameters

R,(M=Y, /Y, =L1+v), (13a)

R,(M=Y, /Y, =L1—v), (13b)
which provide a more compact notation.

We define a vertex in regions a and b to be an intersec-
tion of a phase space trajectory with the line ¢ =0. In re-
gion ¢, we define a vertex to be any turning point of a tra-
jectory. At a turning point, dE /dq = —03K /9¢ goes to
infinity—this occurs when ¢=¢_,, and when
O=max =27 —Pmin- The critical vertex is defined to be
the first, last, or only vertex in region ¢ during the
separatrix-crossing process. There can be only one such
vertex [8]. Following Ref. [8], we define the crossing pa-
rameters to be

M, =[E —a(r)]/AE4(A,), (14a)
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M, =[E4—a(r)]/AE, (1), (14¢)

where E 4, is the value of the Hamiltonian at the critical
vertex. The possible range of crossing parameters will be
discussed below in Sec. IVB. It is shown in the Appen-
dix how to calculate the crossing parameter, given arbi-
trary initial phase space coordinates.

There is another parameter G, defined below Eq. (64c)
of Ref. [8], which is related to the value of J, at a vertex.
It was shown in Ref. [8] that, near the separatrix, J; can
be found to lowest order at a vertex in region a or b sim-
ply by evaluating it at the saddle point. It can be deter-
mined from Eq. (7a) above that J, vanishes at the saddle
point in regions a and b. Thus the parameters g, and g,,
defined in Eq. (26) of Ref. [8], vanish for our system,
which means the parameter G also vanishes.

Now we can present the equations for the final values
of J after a separatrix crossing. If the transition is from
region a to region c (or vice versa), then the final value of
the adiabatic invariant in region 7 is given by [8]

Y .
Jpg=Y,+—"[In|T(—|M,T(1+R,IM,T(1—R,+R,IM,|)/2m)"
Wp

+In|E 4 /E 4o |+ (14 M, In|Ey, /¥ (| —(1—R,+2R M, In|Ey, /Y] .

(15a)

If the transition is from region a to region 3, the final value of the adiabatic invariant is [8]

Y . -
JfB= YB+Z)€[IH'F(1+MB)F(1_MIZ)/2T’-‘—‘%lnlMaMB’+Ma lniEd,a/YcJ —Mﬁln|E¢B/Y5H .

In Egs. (15), T is the complete gamma function, as
defined on p. 933 of Ref. [24], ®, =a!/? is the exponentia-
tion rate of orbits near the saddle point, and all the time-
dependent quantities are to be evaluated at the pseudo-
crossing time A, .

B. Phase correlations between subsequent crossings

We now use the results of Ref. [9] to calculate the
change in the crossing parameter for a trajectory which
traps into region ¢, then subsequently detraps. First we
define the necessary quantities, then we present the gen-
eral formula. Finally, we show explicitly how the formu-
la is implemented for our system.

The crossing parameter is linearly related to the adia-
batic angle [8] (i.e., the angle canonically conjugate to the
adiabatic invariant series), so calculating its change in-
volves a time integral of the adiabatic frequency. Be-
cause the integration time will be of order e ! (.e., the
time between successive separatrix crossings), the adia-
batic frequency must be calculated through order ¢ in or-
der to obtain a result correct through order unity. The
first-order corrected frequency v!(J',A) is obtained by
differentiating the first-order corrected Hamiltonian with
respect to the first-order corrected invariant,
JI(E¢’A,¢)EJO(E¢,}»)+€JI(E¢,}»,¢).

(15b)

{
i

First we define the lowest-order Hamiltonian K y(Jg,A)
as the inverse of the function J(E4,A):

Jo(Ko(x,A),A)=x . (16a)

Thus K, has the same numerical value as the Hamiltoni-
an given in Eq. (2), but will have a different functional
form. In fact, we define K, only implicitly through Eq.
(16a), because we cannot invert Egs. (5) analytically. The
lowest-order frequency is

3K o(Jg,A)
Vo(-]o, - aJO

oK, AuA) |

(16b)
3E,

where the second equality follows from taking the partial
derivative of both sides of (16a) with respect to x, then
letting x =J .

Using Egs. (9) and (11) of Ref. [9], we find the first-
order corrected Hamiltonian:

KYJLA)=Ky(JA)
—evo(J,A)
XJ[Ko(J LA A (Ko (JLA)A)] . (172)

Here K, (J LA) and vo(J 1'A) are the functions defined in
Eqgs. (16), with the first-order corrected adiabatic invari-
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ant J'=J,+eJ; used in place of J, Similarly,
J1(Ko,A, ) is the first-order correction to the adiabatic
invariant as defined in Eqgs. (7), but with the indicated ar-
guments replacing the original ones. We choose
¢o(Ko(J,A),A)=0 in regions a and b, and
$o=@min=arccos(E,/a) in region c. We obtain the
first-order corrected frequency by differentiating Eq. (17a)
with respect to J,:

3vo(JL,A)

VIILA) =v(J,A) —¢ aJ" J (Ko, A dp)

aJl(KO:A-’¢0)

1
FlI L

(17b)

Because the final phase space is symmetric about the line
o=, Jla(E¢,)»,¢=0) vanishes. Thus, the O(g) term on
the right-hand side of Eqgs. (17) is nonzero only in reg-
ion c.

We defined the critical vertex in Sec. IV A to be the
first, last, or only vertex in region c¢. This means, as can
be seen from Fig. 1, that the critical vertex may lie on the
left (¢ <) or the right side (¢ > ) of the phase space. It
is necessary to define a crossing parameter M,, which is a
crossing parameter for region c that is calculated using
E,,, the value of the Hamiltonian at the first or last ver-
tex to the right of the line ¢ =1

M,=E; /AE,.(X,) . (18)
It is not necessary to define M, for transitions from re-
gion a to b, or vice versa, for which the critical vertex is
the only vertex in region ¢. Depending on the transition
taking place, either M,=M,, M.,=M,—R,, or
M. =M,+R,. The crossing parameter M, is equivalent
to the parameter M, defined in Ref. [8].
Table I gives the range of the relevant crossing param-
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eters for every possible transition. The top half of Table I
considers the case a’(A,)>0, which means any transi-
tions must take place on the left side of the wave, while
the bottom half of the table considers the case a'(A, ) <0,
which means any transitions must take place on the right
side of the wave. The bottom and top halves of the table
are each broken into two sections—one for which
R, (A, )>0, and one for which R,(A,)<0.

The first row of Table I considers trajectories that are
initially in phase space region a. One can see from the
first two entries in this row that it deals with the case
a'(A,)>0 and R,(A,)>0 [i.e, v(A,)=<1]. Because the
critical vertex is in region ¢, we know that
[Eg—alA,)]<O0. Furthermore, [Eg—al(d,)]
—AE , >0, because the previous vertex was in region a.
These last two inequalities, upon dividing by the positive
quantity —AE,, are expressed in the third entry of the
row. The fact that AE, is negative is consistent with
Eq. (12a) for positive a’. We note that if AE;, were posi-
tive, then those separatrix-crossing trajectories closest to
the lower branch of the separatrix would immediately de-
trap into region b; however, Eq. (12b) indicates that
AE;, <0 for a' and R, both positive, so all the
separatrix-crossing trajectories remain in region c¢. This
result is expressed in the fourth entry of the row. Be-
cause the critical vertex occurs to the right of the line
¢=m for an a —c transition, M, =M_, and the fifth entry
in the row is obtained from the definitions of M, and M,
given in Egs. (14). The sixth entry in the row is obtained
directly from the third and fifth entries. The other rows
in Table I were obtained by similar analyses.

If a trajectory crosses the separatrix into region c at the
pseudocrossing time A, and with crossing parameter M,,
then at some later time leaves region ¢, we call the second
crossing time A} and the second crossing parameter M,.
Similar notation is used for trajectories that enter and
exit region g or b.

The resulting crossing parameter is given in terms of
the old one by Egs. (37) of Ref. [9]:

TABLE 1. For the sign of a’ given in the first column and the sign of R, given in the second column,
if the crossing parameter in the initial region is in the range indicated in the third column, then the
transition given in the fourth column takes place. The fifth column gives the crossing parameter
relevant to the new region, and the sixth column gives its range. All possible separatrix-crossing transi-

tions are shown.

Initial region: range Resulting New region: Range of new
a’(A,) Ry(A,) of crossing parameter transition crossing parameter  crossing parameter
a>0 R,>0 O<M,<1 a—c M,=M,R, O0<M,<R,
0<M,<1 b—c M,=M,R,+R, R, <M, <1
R, <0 O<M,<—R,/R, a—b M,=M_,R,/R, —1<M, <0
—R,/R, <M, <1 a—c M,=M,R, —R, <M, <R,
a’<0 R,>0 —1<M,<—R, c—a M,=(M,+R,)/R, —1<M,<0
—R, <M, <0 c—b M,=M,/R, —1<M, <0
R, <0 —1<M,<0 c—a M,=(M,+R,)/R, —1<M,<—R,/R,
0<M,<1 b—a M,=M,R,/R, —R,/R, <M, <0
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M, =frac{M, +®,(J,, )+ L[Ry(A,)—R, (A )—R,(AL)
(19a)
(19b)

+R, (A} —1,
M, =frac[M, +®,J,)],

where frac is a function which yields the fractional part
of its argument, and J,, is the value of J' between the
two separatrix crossings. The subtraction of unity at the
end of Eq. (19a) puts M, in the proper interval. As can
be seen from the third column of Table I, the value of M,
must lie in the interval (—1,0) before a transition takes
place, while M, must lie in the interval (0,1). The phase
advance function ®,(J,, ) is defined by
Ay

@, (J,)=e"" [ TdAviJ,,A), (19c)
with J,, held constant during the integration. In general,
this integral must be evaluated by quadrature.

We defined the pseudocrossing time in Sec. IV A in
terms of the value of J on the trajectory and the value of
the separatrix action in the initial region. In Egs. (19), A},
is defined in just this way; however, the A, in these equa-
tions is defined in terms of J,,. To be more explicit, we
have J,, =Y, (A;)=Y,(A,). Equations (15) and (19) con-
stitute a map for our system—the separatrix-crossing
map.

C. Comparison of theory with numerics

We consider an initial ensemble of trajectories far to
the left of the wave in phase space region a, each with the
same momentum p; and uniformly distributed in the adi-
abatic angle. We wish to use separatrix-crossing theory
to predict the final momentum of each particle long after
its interaction with the wave p,, and compare these re-
sults with those obtained by numerically integrating the
equations of motion.

In Fig. 2, we plot the final momentum p, versus the in-
itial adiabatic angle ®;,. The initial phases of the parti-
cles were chosen so that the values of M, at the first
crossing would be uniformly distributed between O and 1.
(We explain in the Appendix how to do this.) The initial
adiabatic invariant is J;, =8.14 (p; =1.61); the maximum
wave amplitude is a,=0.4; and the slowness parameter €
is equal to (a) 0.04, (b) 0.02, and (c) 0.001.

The solid lines in Fig. 2 were obtained by using
separatrix-crossing theory as described in Secs. IV A and
IV B, to find the final value of the adiabatic invariant in
region a, Jg,. The final momentum was then obtained
from Eq. (9). The dotted lines simply show the breaks be-
tween initial conditions which result in detrapping into
region a and those that result in detrapping into region b.
The squares show the results of numerically integrating
the equations of motion.

The horizontal dashed lines in Figs. 2(a) and 2(b) show
the two possible values of p, according to the lowest-
order dynamics discussed in paper I. The upper line is
just p,=p;, while the lower line is given by Eq. (13) of pa-
per I. Figures 2(a) and 2(b) indicate that the agreement
between theory and numerics improves as € is decreased
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from 0.04 to 0.02. In Fig. 2(c), we show only those parti-
cles that detrapped into region a, with €¢=0.001. This
figure indicates that, as & becomes very small, the
separatrix-crossing map is able to reproduce virtually
every detail of the particle dynamics. We note that the
discrepancy between theory and numerics seen in Fig.
2(a) is primarily in the phase, which suggests that phase-
averaged quantities obtained from the separatrix-crossing
map would be accurate for € as large as 0.04.

Given an ensemble of resonant trajectories with the
same adiabatic invariant and uniformly distributed in the
adiabatic angle over the unit interval, the fraction which
is finally in one beam or another can be determined in a
straightforward manner from Table I of Sec. IVB. As an
example, we consider @, to be in the large-amplitude re-
gime, first with an ensemble initially to the left of the
wave, then with an ensemble initially trapped.

If the resonant ensemble is initially to the left of the
wave in region a or b, then one can see from the first two
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FIG. 2. A plot of the final momentum far to the right of the
wave, p; vs the initial adiabatic phase far to the left of the wave,
®,,. The slowness parameter is (a) €=0.04, (b) €=0.02, and (c)
£=0.001, with @;=0.4 in every case. The horizontal dashed
lines gives the values of p, predicted in the limit e—0. The
solid lines were obtained using the full separatrix-crossing map.
The squares are the results of numerical simulations.
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rows of Table I that if R,(A,)>0, all of the trajectories
trap in the wave and none are reflected. If the ensemble
is initially to the left of the wave in region a, and if
R,(A,) <0, then one can see from the third column of the
third and fourth rows that the fraction of trajectories that
trap is Fr=1+R,(A,)/R,(A,), and the fraction of tra-
jectories that reflect is F =—R,(A,)/R,(A,). We can
summarize these results by writing

1 for O<v, <1 (20a)
FT= l—vx

140, for v, >1, (20b)
Fr=1—Fr, (20c)

where we have used Egs. (13), and v, =v(A,).

If the ensemble is initially in region c (i.e., trapped),
and if R, (A, ) >0, then one can see from the third column
of the fifth and sixth rows of Table I that the fraction of
trajectories that detrap into region a is
F,=R,(A,)=1—R,(A,), and the fraction of trajectories
that detrap into region b is F, =R,(A,). For R,(i,)<0,
we can see from the seventh row that all of the trajec-
tories detrap into region a. We summarize these results
as follows:

+(1+v,) for 0<v, <1 (21a)
Fa=11 forv,>1, 21b)
F,=1—F, , 21c)

where we have once again used Egs. (13). Probabilities of
this type have been previously calculated for separatrix-
crossing problems (see, e.g., Ref. [8] and references
therein).

We compare these analytic results, which hold in the
limit €—0, with the results of numerical simulations in
Fig. 3 by plotting F, Fy, F, and F, vs the quantity v,,
for ;=3 and €=0.07. In this figure, v, increases from
zero both to the left and to the right. The values of v, to
the left of zero correspond to ensembles which were ini-
tially in region b, while those to the right of zero corre-
spond to ensembles that were initially in region a.

The numerical data in Fig. 3, represented by open and
filled squares, were obtained by the following method.
First, an initial value of the adiabatic invariant, J;,, was
chosen such that v, would have the desired value. This
was done by using the definition of v to solve for a,, then
using Egs. (8a) and (8b) to solve for Y,(A,), and finally
letting J;,=Y,(A,). Second, 3X10* initial conditions
with this value of J;, were placed far to the left of the
wave in region a, uniformly distributed in the adiabatic
angle ®,, over the unit interval. Third, the equations of
motion were integrated until each particle had interacted
with the wave and was again far from the wave.

The vertical positions of the open squares in Fig. 3(a),
which indicate the fraction of particles that become
trapped, were obtained by counting the number of parti-
cles that were finally to the right of the wave, and divid-
ing by the total number of particles. The vertical posi-
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FIG. 3. In (a), the trapping fraction of an initial ensemble
uniformly distributed in the adiabatic angle over the unit inter-
val, Fr, and the reflecting fraction Fr =1— F are plotted vs the
parameter v, =(m/2)a'’%(A,). The solid lines were obtained
from Eqgs. (20), and the symbols were obtained by numerically
integrating 3X 10° trajectories through the wave. In (b), the
fraction of trapped particles which detraps into region a, F,, is
plotted vs v,. The dashed lines show F, and F,=1—F, as
given by Egs. (21). The solid line shows F, as given by the full
separatrix-crossing map. The squares were obtained from the
same numerical simulations used for (a). In both plots, €=0.07
and ay=3.

tions of the filled squares, which indicate the fraction of
particles that become reflected, are obtained (by
definition) by reflecting the open squares about the
Fr=0.5 line.

The vertical positions of the open squares in Fig. 3(b),
which indicate the fraction of trapped particles that de-
trap into region a, were obtained by counting the number
of particles with final momentum p, such that p,>1,
then dividing by the total number of particles that were
finally to the right of the wave. In order to avoid exces-
sive clutter, we do not show the results for particles that
detrap into region b, which can be obtained by reflecting
the open squares about the F,=0.5 line. Because 3 X 10°
initial conditions were used in each case, the statistical
error in the vertical positions of the squares should be on
the order of a few percent.

The solid lines in Fig. 3(a) were obtained from Egs.
(20). Comparing these lines with the numerical data
shows that theory predicts F; and Fy to a good approxi-
mation for most values of v, , even with ¢ as large as 0.07.
However, the numerical data for ensembles initially in re-
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gion b (data for these ensembles appear toward the left
edge of the plot), and for v, close to unity, do not agree
well with the theory, which indicates that all trajectories
should become trapped. Particles for which p; <1 and
v, S 1 are within the resonant or separatrix-crossing re-
gime to lowest order in € and, hence, should trap, but
they are very close to the ponderomotive reflection re-
gime [13]. Of such particles, those that reflect do so be-
cause, as they approach the separatrix very closely, their
adiabatic invariant changes by O(¢g), which is enough to
move them into the ponderomotive regime. This issue is
discussed in greater detail in paper I.

The dashed lines in Fig. 3(b) were obtained from Egs.
(21), which assume that the ensemble is uniformly distri-
buted in the adiabatic angle before the separatrix crossing
occurs. We refer to this as the random-phase assump-
tion. However, the ensembles used in our simulations
were not uniformly distributed in the adiabatic angle be-
fore detrapping from the wave. Instead, each ensemble
had some nontrivial distribution in phase as a result of
the separatrix crossing that occurred when the particles
became trapped.

The solid line in Fig. 3(b) shows the theoretical predic-
tion for F, as a function of v,, taking the effect of corre-
lations (i.e., the nonuniformity of the phase distribution)
into account. For the sake of clarity, we do not show the
result for F,, which is obtained by reflecting the result for
F, about the F,=0.5 line. The solid line exhibits strong
oscillations about the random-phase prediction. These
oscillations are similar to those shown in Fig. 11 of Ref.
[9] for the symmetric double-well potential.

A comparison of the solid line and the open squares in
Fig. 3(b) shows the separatrix-crossing theory predicts F,
(and, hence, F, as well) to a reasonable approximation for
many values of v, , even for € as large as 0.07. For the en-
sembles initially in region b, there is a phase shift between
the theory and the simulations, although qualitative
agreement is obtained. In particular, the number of oscil-
lations about the random-phase prediction is the same for
both. If € were decreased, the agreement between theory
and numerics in Fig. 3(b) would improve; however, the
number of oscillations of F, around the random-phase
prediction increases with € ~!. Thus it becomes difficult
to make a plot like Fig. 3(b) in the limit of small €.

For v, <<1, the theoretical prediction does not agree
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even qualitatively with the numerical simulations. This is
because the adiabaticity parameter ¢, =¢/a!/? diverges
at the time of trapping for any finite value of € (even if
g€<<1) in the limit that a, —0 or, equivalently, in the
limit p;—1. We call this the exact resonance limit, be-
cause it corresponds to the initial velocity of the particle
approaching the phase velocity of the wave.

The separatrix-crossing map breaks down in the exact
resonance limit, because separatrix-crossing theory re-
quires that the rate of change of the Hamiltonian, €, be
small compared to the exponentiation rate of orbits near
the fixed point at the time that the separatrix is crossed,
al’? (hence our requirement that €, be small during trap-
ping and detrapping). Furthermore, trajectories that trap
when the wave amplitude is very small will oscillate only
very slowly, even after they are far from the separatrix,
because the maximum bounce frequency in the wave (i.e.,
that for deeply trapped particles) is a!/?; thus the as-
sumption of a separation in time scales is violated and
adiabatic invariance theory will not be valid subsequent
to the separatrix crossing. This in turn violates the re-
quirement of separatrix-crossing theory that trajectories
be adiabatic before and after the separatrix is crossed.
The dynamics of particles that trap and detrap in the ex-
act resonance limit remains an open problem.

V. MULTIPLE WAVE-PARTICLE INTERACTIONS

FKRB present an extensive study of multiple wave-
particle interactions in a system very similar to ours,
finding diffusive dynamics in the weak turbulence limit,
while showing the dynamics in the strong turbulence lim-
it to be dominated by strong scattering. Here we further
clarify the dynamics of the strong turbulence limit by ap-
plying separatrix-crossing theory. Our model consists of
a wave packet in a one-dimensional box of length Ly,
where Ly is much larger than the scale length of the
wave envelope, as is shown in Fig. 4, with a;=0.3,
£=0.05, and Lz =500. Trajectories which exit the box
to the left or right simply enter at the other side with the
same momentum. This configuration corresponds to a
periodic array of wave packets, which means that the
Hamiltonian of Eq. (2) is now periodic in the slow “time”
variable A =gq.

Because the velocity of resonant particles (in our di-

0.3 |
ag=0.3
€ =.05
]
£
E FIG. 4. Wave packet, with
5 0.0 ay=0.3 and €=0.05, in a one-
2 dimensional box of length
ES Ly =500, with periodic bound-
ary conditions.
-03 | l
-250 -125 0 125 250
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mensionless units) is of order unity, the time scale associ-
ated with wave-particle interactions in our box is
T,=O0(Lg). If the initial distribution is a single cold
beam, then the distribution after a few wave-particle in-
teractions will be two warm beams. For longer times, the
dynamics will be dominated by diffusive effects. The time
required for an arbitrary initial ensemble to fill
separatrix-swept phase space sets the time scale associat-
ed with diffusion, T;. It was shown in Ref. [8] that the
small phase-dependent kick for a given particle is
O(eIn|e™!|), which implies that the mean square spread-
ing of an ensemble due to each interaction must be
O(e?1n?|e|). The size of separatrix-swept phase space is of
order unity, and the time between wave-particle interac-
tions is O(Lg), so the time for an arbitrary ensemble to
saturate is roughly T,=O(Lg/€%n%|e|). See Ref. [15]
for a detailed discussion of the time scale for spreading
throughout separatrix-swept phase space. In the limit of
small e, T;>>T,, and the two time scales are well
separated.

Previous numerical and analytic work suggests that
trajectories move ergodically throughout separatrix-
swept phase space [15-18]. If this is correct, then any
trajectory which is initially in separatrix-swept phase
space will eventually come arbitrarily close to every point
in that region. After a long time, the probability of
finding such a trajectory in any localized region within
separatrix-swept phase space is simply proportional to
the area of that region, independent of the trajectory’s in-
itial conditions.

Given an arbitrary initial ensemble of trajectories in
separatrix-swept phase space, after many separatrix
crossings they will reach a steady state in which their
final distribution is approximately uniform throughout
this entire phase space region. Thus, for the wave-packet
potential, an arbitrary initial ensemble of trajectories will
eventually become uniform in the (¢,E) phase space at
fixed A (i.e., at fixed ¢q). The transformation from the
Hamiltonian of Eq. (1) to the Hamiltonian of Eq. (2) was
canonical, so this steady-state ensemble will also be uni-
form in (q,p) phase space at fixed ¢ (i.e., the real time). In
simpler terms, the momentum distribution function even-
tually goes flat.

The dynamical scenario we have just described is
verified by the numerical results presented in Fig. 5,
which shows the time evolution of the momentum distri-
bution function, F(p), 5X10® particles and the system
parameters a,=0.3, €=0.05, and L;=500. The top
frame shows the initial beam of particles with p, =0.525.
The particles were randomly distributed in phase, but
closely packed, and far from the wave.

In the second frame in Fig. 5, we see F(p) at the time
t =1000, after which some of the particles have interact-
ed with the wave twice and some only once. Most of the
particles have been kicked into the higher momentum
beam. The value of this higher momentum (in the limit
€—0) is predicted by Eq. (13) of paper I to be p,~1.57.

The third frame of Fig. 5 shows the distribution func-
tion for ¢ =5000, or after approximately ten wave in-
teractions for each particle. The two beams have by this
time become roughly equal in intensity and have spread
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FIG. 5. Time evolution of the momentum distribution func-
tion F(p) for 5X10° test particles interacting with the wave
packet shown in Fig. 4.

over all of the possible momentum values. We see in the
bottom frame of Fig. 5 that, after an average of about 60
wave interactions for each particle (r=3X10%, the
momentum distribution function is essentially flat.

In each frame of Fig. 5, the 5X10° particles were
binned according to their momentum, with 26 bins be-
tween p.. =~0.453 and p,,, =1.73 [see Egs. (14) of paper
I]. In the limit that the wave width €' is small com-
pared to the periodicity length Ly, most of the particles
should be uniformly distributed in momentum between
Pmin and p... Therefore, the fraction of particles in each
of the 26 bins between these momentum values should be
1/26~3.85X 1072, which is roughly what we see in the
bottom frame of Fig. 5.

Given that the dynamics of this system is ergodic, it is
straightforward to calculate the average momentum of an
ensemble of resonant particles in the long-time limit. Ex-
plicit formulas have been calculated previously [25], but
here we wish to emphasize the general utility of this idea
rather than the specific details for our simple model.
Such a calculation would be of great interest, for exam-
ple, in the case of very strong rf current drive (discussed
in Sec. V1), for which it would allow one to obtain analyt-
ically the achieved current as a function of system param-
eters.

VI. DISCUSSION

We have shown how separatrix-crossing theory can be
applied to 1D accelerating structures with slow spatial
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variation, such as a broad wave packet. We have calcu-
lated the adiabatic invariant series J through first order in
the slowness parameter €. When the wave amplitude is of
order unity, there exists a large class of resonant trajec-
tories which either trap in the wave and subsequently de-
trap, or else are resonantly reflected by the wave. The
adiabatic invariant is broken along such trajectories, due
to separatrix crossing. However, separatrix-crossing
theory [8] and the theory of phase correlations [9] togeth-
er constitute a mapping, which we call the separatrix-
crossing map, that gives the change in J and its conjugate
angle ® due to a wave-particle interaction. Numerical
simulations show that the separatrix-crossing map accu-
rately describes resonant particle dynamics in the limit of
small €.

We have also developed a simple scenario which quali-
tatively describes the evolution of an arbitrary initial en-
semble of test-particles in a periodic array of broad,
large-amplitude wave packets and which quantitatively
describes the resulting steady-state distribution. The en-
semble evolves dramatically during the first few wave-
particle interactions as resonant particles strongly scatter
with each interaction. On a longer time scale, the ensem-
ble slowly spreads, because the separatrix crossing map is
stochastic. In steady state, the distribution is uniformly
distributed in momentum throughout separatrix-swept
phase space.

The Hamiltonian system studied here provides a crude
model for electron dynamics in a strongly turbulent plas-
ma which is characterized by large-scale, narrow-
spectrum wave structures. As was noted in Sec. I, a com-
parison of the numerical work of Graham and Fejer with
that of FKRB shows that a coherent wave model yields
qualitatively the same dynamics as does an incoherent
model, when in the strong turbulence limit. Although it
may be impractical to derive a diffusion coefficient for
such a system, the stochasticity of the separatrix-crossing
map allows one to predict the final distribution function
for resonant electrons (given the parameters of the tur-
bulent wave structures), so that one could predict the
amount of wave energy that would be lost to resonant
particles. Thus our work provides a starting point for a
detailed, self-consistent model of strong electrostatic plas-
ma turbulence.

Our Hamiltonian system is also a simple model for
electron dynamics in a tokamak with very strong current
drive. FKRB had this application in mind. A more ex-
plicit example is the microwave tokamak experiment at
Lawrence Livermore National Laboratory [26], in which
it was proposed that a high power radio-frequency free-
electron laser be used to a drive a localized large-
amplitude wave in the Alcator-C tokamak. Through ap-
plication of our methods to the appropriate Hamiltonian,
one could deduce the steady state of such a system, which
would allow one to calculate the generated current as a
function of system parameters.

Finally, our wave packet potential resembles the pon-
deromotive potential of a Compton regime free-electron
laser (FEL) (see, e.g., Egs. (43) and (60) for Ref. [27]), in
the limit that the spatial variations in the wiggler magnet
occur over scale lengths long compared to the synchro-
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tron oscillation length of the trapped electrons. The au-
thors discussed in paper I how adiabatic tapering of the
magnetic field strength at the wiggler entrance and exit
would minimize longitudinal emittance growth (i.e., heat-
ing) of the electron beam. This is important in an elec-
tron ring FEL for two reasons: first, excessive heating of
the electron beam will diminish the resonant coupling be-
tween the bunches and the ponderomotive potential dur-
ing subsequent passes, and second, strong perturbation of
the electron beam by the wiggler might disrupt the ring
performance. In addition, preliminary analysis [28] has
shown that adiabatic trapping into the ponderomotive
potential can lead to enhanced energy extraction in a sin-
gle pass and improved efficiency during multiple passes.
Given an appropriately tapered wiggler in a recirculating
system, the sort of analysis presented here would allow
one to calculate the steady-state longitudinal distribution
of the electron beam, which in turn is required for under-
standing of the steady-state operation of the FEL.
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APPENDIX

The crossing parameter for each phase space region is
defined in Ref. [8] just as we have defined them above in
Egs. (14). Such a definition, however, requires that one
numerically integrate the separatrix-crossing trajectory in
question, in order to find the value of the Hamiltonian at
the critical vertex, E 400 if one wishes to know how the
adiabatic invariant changes. Once the initial crossing pa-
rameter is known, one can then use the theory of phase
correlations [9] to obtain subsequent crossing parameters.
In order to have a complete separatrix-crossing map
which does not depend in any way upon numerical in-
tegration of differential equations, here we present an an-
alytic method for determining the initial crossing param-
eter for arbitrary initial conditions.

We now follow Sec. IV of Ref. [9] by defining ¢ _, as
the “time” when a particular trajectory reaches the ver-
tex that is N steps before the critical vertex. We define a
step to be the portion of a trajectory between two succes-
sive vertices. Furthermore, we choose g _, to lie in the
interval where both the near-separatrix perturbation
theory and adiabatic theory are valid for this trajectory.
While the trajectory in question was taken to be in region
¢ for Ref. [9], we consider it to be in one of the other two
regions, which we denote by B. Adiabatic theory still
holds at the time g _ y, so we know that ® _, =0 (because
the trajectory is at a vertex), and that the adiabatic in-
variant series is given by its initial value
JI(E,#._N,q_N):J‘-‘

The object of this appendix is to take an arbitrary ini-
tial condition in region B that will eventually result in a
separatrix crossing, and determine analytically the ap-
propriate crossing parameter. We write the coordinates
of the initial condition as (J;,®;,q). Because adiabatic
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invariance theory holds for g between g; and q_p, we
know that

= v 1 = =
O_y= [®i+fql dq VB(J,-,}\-=EQ) modl_o ’ (A1)
which means that the quantity in the brackets must be
some integer n. This equation is analogous to Eq. (27) of
Ref. [9].
We can rewrite the integral on the right-hand side of
Eq. (A1) in the form

9-N qx
[ Tdg v, N=®,80a)— [ 7 dgviaLL) L, (A2)
9q; 9_N

which is analogous to Eq. (29) of Ref. [9]. We call &4
the initial phase advance function for region B, in order
to distinguish it from the phase advance function ®g,
which is defined in Eq. (18c) above and in Eq. (38) of Ref.
[9]. The initial phase function is defined by

A'X
®iplTng)=c " [ TAAVYILA) . (A3)
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The integral on the right-hand side of Eq. (A2) has
essentially been evaluated in Ref. [9]. Following Ref. [9],
we change the variable of integration from the time g to
the value of the first-order corrected Hamiltonian. The
result, to lowest order in g, is

Kp(JuA ) —Kp(J;A_y)
Yp(A,)

9y . _
) ,,_qu vi(J,A) , (A4)

which is analogous to Eq. (32b) of Ref. [9]. If we now use
Egs. (20a) and (35) from Ref. [9], as well as the definition
of the crossing parameter, we obtain the following
lowest-order result:

J.” dg v, =Ms+N . (AS)
-N

At this point, we can use Egs. (A1), (A2), and (A5) to ob-
tain the result
Mg=frac[®, +®,4(J;,4,)] , (A6)

where ®;; must be obtained, in general, via quadrature.
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FIG. 5. Time evolution of the momentum distribution func-
tion F(p) for 5X10° test particles interacting with the wave
packet shown in Fig. 4.



